Características principais Técnicas de regressão, incluindo linear. Linear generalizado, não linear. Robusto, regularizado. ANOVA, medidas repetidas e modelos de efeitos mistos Grandes algoritmos de dados para redução de dimensão, estatística descritiva, agrupamento de k-means, regressão linear, regressão logística e análise discriminante Distribuições de probabilidade univariadas e multivariadas. Geradores de números aleatórios e quase-aleatórios. E amostras de corrente de Markov Testes de hipóteses para técnicas de distribuição, dispersão e localização e design de experimentos (DOE) para projetos de superfície ótimos, fatoriais e de resposta Classificação Aprendizagem e algoritmos para aprendizado de máquinas supervisionadas. Incluindo máquinas de vetor de suporte (SVMs), árvores de decisão ampliadas e ensacadas, k-vizinho mais próximo, Nave Bayes, análise discriminante e regressão de processo gaussiano. Algoritmos de aprendizado de máquina não supervisionados, incluindo k-means, k-medoids, agrupamento hierárquico, misturas gaussianas e Modelos ocultos de Markov Otimização bayesiana para algoritmos de aprendizagem de máquinas de ajuste procurando por hiperparâmetros ideais Saiba como ferramentas de aprendizado de máquina no MATLAB podem ser usadas para resolver problemas de regressão, agrupamento e classificação. Execute modelagem e análise estatística usando o Statistics and Machine Learning Toolbox. As estatísticas de análise de dados exploratórios e a caixa de ferramentas de aprendizado de máquina fornecem várias maneiras de explorar dados: plotar estatístico com gráficos interativos, algoritmos para análise de cluster e estatísticas descritivas para grandes conjuntos de dados. Traçado estatístico com gráficos interativos Como visualizar dados multivariados usando vários gráficos estatísticos. Estatística descritiva As estatísticas descritivas permitem que você compreenda e descreva rapidamente grandes conjuntos de dados usando rapidamente alguns números altamente relevantes. A Caixa de ferramentas de Estatística e Aprendizagem de Máquinas inclui funções para calcular: Estas funções ajudam você a resumir valores em uma amostra de dados usando alguns números altamente relevantes. Em alguns casos, a realização de inferências em estatísticas resumidas usando métodos paramétricos não é possível. Para lidar com esses casos, o Statistics and Machine Learning Toolbox fornece técnicas de reescalonamento, incluindo: Amostragem aleatória de um conjunto de dados com ou sem substituição. Uma função de inicialização não paramétrica para investigar a distribuição de estatísticas usando o reescalonamento. Uma função jackknife para investigar a distribuição de estatísticas usando Jackknife Resampling A função bootci para estimar intervalos de confiança usando estações de bootstrap não paramétricas e Toolbox Learning Tool inclui algoritmos para a realização de análise de cluster para descobrir padrões em seu conjunto de dados agrupando dados com base em medidas de similaridade. Os algoritmos disponíveis incluem k-means. K-medoids. agrupamento hierárquico. Modelos de mistura gaussiana. E modelos escondidos de Markov. Quando o número de clusters é desconhecido, você pode usar técnicas de avaliação de cluster para determinar o número de clusters presentes nos dados com base em uma métrica especificada. Saiba como detectar padrões em perfis de expressão gênica ao examinar dados de expressão gênica. As estatísticas de regressão não paramétrica e a Toolbox Learning Tool também suportam técnicas de regressão não paramétrica para gerar um ajuste preciso sem especificar um modelo que descreva a relação entre o preditor e a resposta. As técnicas de regressão não paramétrica podem ser mais amplamente classificadas sob a aprendizagem automatizada de máquinas para regressão e incluem árvores de decisão. Árvores de regressão elevadas ou ensacadas. E regressão da máquina vetorial de suporte. Prever o risco de seguro através do conjunto de treinamento de árvores de regressão usando o TreeBagger. Regressão e ANOVA Regressão Usando técnicas de regressão, você pode modelar uma variável de resposta contínua como uma função de um ou mais preditores. Statistics and Machine Learning Toolbox oferece uma variedade de algoritmos de regressão, incluindo regressão linear. Modelos lineares generalizados, regressão não linear. E modelos de efeitos mistos. Regressão linear A regressão linear é uma técnica de modelagem estatística utilizada para descrever uma variável de resposta contínua como uma função de uma ou mais variáveis preditoras. Isso pode ajudá-lo a entender e prever o comportamento de sistemas complexos ou analisar dados experimentais, financeiros e biológicos. A Caixa de ferramentas de Estatística e Aprendizagem de Máquinas oferece vários tipos de modelos de regressão linear e métodos de montagem, incluindo: Simples: Modelo com apenas um preditor Múltiplo: Modelo com múltiplos preditores Multivariável: Modelo com múltiplas variáveis de resposta Robusto: Modelo na presença de outlook Stepwise: Modelo com Seleção de variável automática Regularizada: Modelo que pode lidar com preditores redundantes e evitar o excesso de uso usando o cume. laço. E algoritmos de rede elástica Neste seminário web, você aprenderá a usar a Caixa de ferramentas de Estatística e Máquinas para gerar modelos preditivos precisos a partir de conjuntos de dados que contenham grandes quantidades de variáveis correlacionadas. Os modelos lineares generalizados são um caso especial de modelos não-lineares que utilizam métodos lineares. Eles permitem que as variáveis de resposta tenham distribuições não normais e uma função de link que descreva como o valor esperado da resposta está relacionado aos preditores lineares. A Caixa de ferramentas de Estatística e Aprendizagem de Máquinas suporta montagem de modelos lineares generalizados com as seguintes distribuições de respostas: Binômio Normal (regressão logística ou probit) Poisson Gamma Gaussiano Inverso Avaliando a Qualidade das Estatísticas de Ajuste e a Ferramenta de Aprendizagem de Máquinas fornece gráficos estatísticos para avaliar a forma como um conjunto de dados corresponde a uma especificação distribuição. A caixa de ferramentas inclui gráficos de probabilidade para uma variedade de distribuições padrão, incluindo valores normais, exponenciais, extremos, lognormal, Rayleigh e Weibull. Você pode gerar gráficos de probabilidade de conjuntos de dados completos e conjuntos de dados censurados. Além disso, você pode usar gráficos quantile-quantile para avaliar quão bem uma dada distribuição corresponde a uma distribuição normal padrão. Statistics and Machine Learning Toolbox também fornece testes de hipóteses para determinar se um conjunto de dados é consistente com diferentes distribuições de probabilidade. Testes de distribuição específicos incluem: testes de Anderson-Darling Testes de um lado e dois lados de Kolmogorov-Smirnov Testes de qualidade de Qui-quadrado Testes de Lilliefors Testes de Ansari-Bradley Testes de Jarque-Bera Testes de Durbin-Watson A caixa de ferramentas fornece funções para gerar pseudorandom E fluxos numéricos quase-aleatórios das distribuições de probabilidade. Você pode gerar números aleatórios de uma distribuição de probabilidade instalada ou construída aplicando o método aleatório. Statistics and Machine Learning Toolbox também fornece funções para: Gerar amostras aleatórias de distribuições multivariadas, como t. Normal, copulas e Wishart Amostragem de populações finitas Executando amostras de hipercubo latino Gerando amostras de sistemas de distribuição de Pearson e Johnson Você também pode gerar fluxos de números quase-aleatórios. Os fluxos de números quase aleatórios produzem amostras altamente uniformes da unidade hipercubo. Os fluxos de números quase aleatórios podem, muitas vezes, acelerar as simulações de Monte Carlo porque menos amostras são necessárias para alcançar uma cobertura completa. Use copulas para gerar dados de distribuições multivariadas quando há relações complicadas entre as variáveis, ou quando as variáveis individuais são de diferentes distribuições. A variação aleatória pode tornar difícil determinar se amostras colhidas sob diferentes condições são realmente diferentes. O teste de hipóteses é uma ferramenta eficaz para analisar se as diferenças amostra-amostra são significativas e requerem uma avaliação mais aprofundada ou são consistentes com a variação de dados aleatória e esperada. A Caixa de ferramentas de Estatística e Aprendizado de Máquinas suporta procedimentos de teste de hipóteses paramétricos e não paramétricos amplamente utilizados, incluindo: Uma amostra e dois testes t-teste de amostra Testes não paramétricos para uma amostra, amostras pareadas e duas amostras independentes. Testes de distribuição (qui-quadrado, Jarque-Bera, Lilliefors E Kolmogorov-Smirnov) Comparação das distribuições (Kolmogorov-Smirnov de duas amostras) Testes de autocorrelação e aleatoriedade Testes de hipóteses lineares sobre coeficientes de regressão Você pode usar a Caixa de ferramentas de Estatística e Máquinas para definir, analisar e visualizar um design personalizado de experimentos (DOE ). Funções para DOE permitem que você crie e teste planos práticos para coletar dados para modelagem estatística. Esses planos mostram como manipular entradas de dados em conjunto para gerar informações sobre seus efeitos nas saídas de dados. Os tipos de design suportados incluem: Fatorial completo Fatorial fraccional Superfície de resposta (composto central e Box-Behnken) D-óptimo hipercubo latino Por exemplo, você pode estimar efeitos de entrada e interações de entrada usando ANOVA, regressão linear e modelagem de superfície de resposta e, em seguida, visualizar os resultados Através de gráficos de efeito principal, gráficos de interação e gráficos multivariados. A Caixa de Ferramentas de Estatística e Aprendizagem de Máquinas fornece um conjunto de funções que suportam o controle de processo estatístico (SPC). Essas funções permitem que você monitore e melhore produtos ou processos avaliando a variabilidade do processo. Com funções SPC, você pode: Realizar estudos de repetibilidade e reprodutibilidade de calibração Estimar a capacidade do processo Criar gráficos de controle Aplicar as regras de controle da Western Electric e Nelson para controlar os dados do gráfico Selecione Seu País Informe o quão fácil é começar. Maximize a sua experiência WebAssign e assegure um início suave do novo termo. Com o WebAssign, você obtém as melhores ferramentas de ensino para os livros de texto de cálculo líderes do mercado, suporte para estudantes superiores e recursos de professores extensivos. O WebAssign trabalha com você para criar um laboratório personalizado ou adote um de nossos laboratórios prontos para uso. Novo estudante para WebAssign Descubra como é fácil começar. O WebAssign é uma poderosa solução digital projetada por educadores para enriquecer a experiência de ensino e aprendizagem. O WebAssign fornece conteúdo extensivo, avaliação instantânea e suporte superior. No Spotlight Instrutor Spotlight: dentro da sala de aula Matemática Veja como cinco usuários inovadores do WebAssign estão aprimorando a sala de aula de matemática. Aprenda dicas para atrair alunos e aproveite ao máximo os recursos flexíveis do WebAssigns. Baixe agora conteúdo adicional gratuito A WebAssign oferece uma ampla seleção de conteúdo de matemática revisado por pares e testado, incluindo bancos e avaliações tutorial. Todo o conteúdo está disponível gratuitamente para usuários do WebAssign. Leia mais Por que o WebAssign WebAssign coloca ferramentas poderosas nas mãos dos instrutores para ajudá-los a realizar seus objetivos de ensino. Assista ao nosso vídeo para ver como o WebAssign pode ajudá-lo. Veja o Vídeo Nosso Conteúdo Disponível
No comments:
Post a Comment